

Introduction

3M™ Novec™ 1230 Fire Protection Fluid, dodecafluoro-2-methylpentan-3-one, (CF₃CF₂C(O)CF(CF₃)₂), is a clear, colorless and low odor fluid, one of a long line of 3M products designed as replacements for ozone depleting substances (ODSs) and compounds with high global warming potentials (GWPs), such as HFCs and PFCs.

Novec 1230 fluid is an effective fire extinguishing agent in standard fire scenarios where halons historically have been used and where halon alternatives are now being used.

Typical Applications

Novec 1230 fluid can effectively be applied in streaming, localized flooding, total flooding, inerting and explosion suppression applications in the following areas:

- Data Processing Centers
- Telecommunications
 - Cellular Sites
 - Switching Centers
- Commercial Aviation
 - Aboard Aircraft
 - Airport Crash Rescue Vehicles
- Military Aviation
 - Flightlines
 - Crash Rescue Vehicles
- Military Systems
 - Combat Vehicles
 - Marine Engine Rooms
- Oil & Gas Exploration
 - Platform Helipads
 - Storage Tank Rim Seals

- Transportation
 - Merchant Marine Vessels
 - Mass Transit Vehicles
- Recreation
 - Pleasure Craft
 - Race Cars

Material Specifications

Properties	Novec 1230 Fluid
Dodecafluoro-2-methylpentan-3-one	99.0 mole %, minimum
Nonvolatile residues	0.05 g/100 ml, maximum
Acidity and water content	Specifications are under development.

Fire Extinguishing Performance

The extinguishing performance of Novec 1230 fluid has been shown in small- and large-scale tests. The initial effectiveness has been demonstrated in military applications such as on flightlines and in standard fire scenarios as part of an Underwriters Laboratories and Factory Mutual listing.

Novec 1230 fluid's environmental profile, toxicity characteristics, and fire performance make it a sustainable technology as a halon replacement alternative to Halons, HFCs and PFCs.

An advantage of a liquid agent is that it can be shipped in drums and totes rather than pressurized cylinders. That means that you can air freight Novec 1230 fluid in bulk quantities if needed for refills instead of the very limited quantities of gases that can be air shipped. Additionally, if a leak occurs in the extinguisher or system after superpressurization, the N_2 can easily be vented and the agent retained while repairing the cylinder seal or gasket. With gases, the agent would be lost.

The liquid is pourable, low in viscosity and easy to handle. It can easily be pumped with hand or electric pumps.

Novec 1230 fluid can be used both as a streaming agent (e.g., hand-held extinguishers) or as a total flooding agent in fixed systems. The liquid is compatible with a wide range of materials of construction, and is stable in storage.

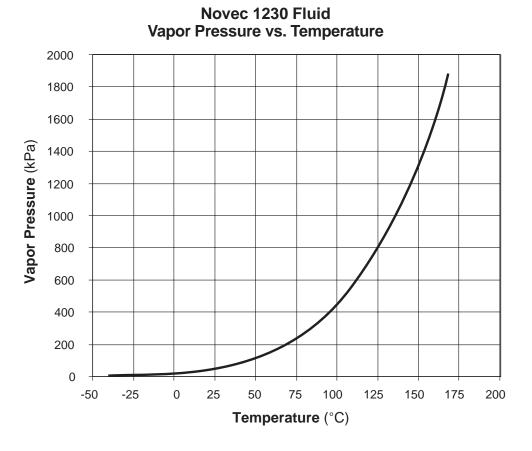
Properties Description

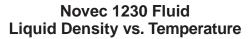
Not for specification purposes

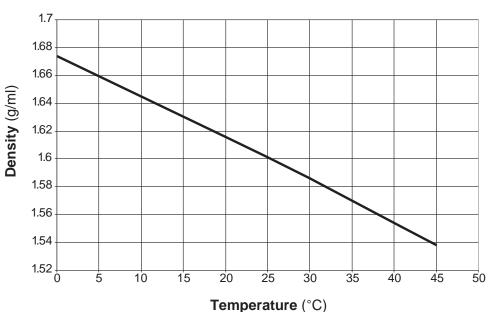
All values determined at 25°C (77°F) unless otherwise specified

Typical Physical Properties	Novec 1230 Fluid
Chemical Formula	CF ₃ CF ₂ C(O)CF(CF ₃) ₂
Molecular Weight	316.04
Boiling Point @ 1 atm	49.2°C (120.6°F)
Freezing Point	-108.0°C (-162.4°F)
Critical Temperature	168.7°C (335.6°F)
Critical Pressure	18.65 bar (270.44 psi)
Critical Volume	494.5 cc/mole (0.0251 ft ³ /lbm)
Critical Density	639.1 kg/m³ (39.91 lbm/ft³)
Density, Sat. Liquid	1.60 g/ml (99.9 lbm/ft ³)
Density, Gas @ 1 atm	0.0136 g/ml (0.851 lbm/ft ³)
Specific Volume, Gas @ 1 atm	0.0733 m³/kg (1.175 ft³/lb)
Specific Heat, Liquid	1.103 kJ/kg°C (0.2634 BTU/lb°F)
Specific Heat, Vapor @ 1 atm	0.891 kJ/kg°C (0.2127 BTU/lb°F)
Heat of Vaporization @ boiling point	88.0 kJ/kg (37.9 BTU/lb)
Liquid Viscosity @ 0°C/25°C	0.56/0.39 centistokes
Solubility of Water in Novec 1230 Fluid	<0.001 % by wt.
Vapor Pressure	0.404 bar (5.85 psig)
Relative Dielectric Strength, 1 atm (N ₂ =1.0)	2.3

Novec 1230 Fluid Safety and Use Concentration Comparison

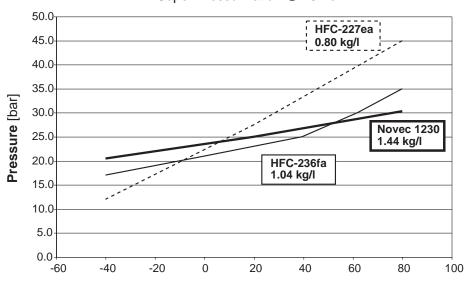

All data other than those for Novec 1230 fluid were compiled from published sources.


Properties	Novec 1230	Halon 1301	HFC-125	HFC-227ea	Inert Gas	CO ₂
Boiling Point °C (°F)	49.2 (120.6)	-57.8 (-72.0)	-48.5 (-55.3)	-16.4 (2.5)	-196.0 (-320.8)	Sublimes at low temps
Use Concentration	4-6%	5%	8.7-12.1%	7.5-8.7%	38-40%	30-75%
NOAEL*	10%	5%	7.5%	9%	43%	NA
Safety Margin	67-150%	nil	nil	3-20%	7-13%	Lethal at Use Conc.


^{*} No Observed Adverse Effect Level for cardiac sensitization (halocarbons), oxygen depletion (inert gas) and effects specific to CO₂.

Novec 1230 fluid offers outstanding margins of human safety when compared to halon and to all viable alternatives.

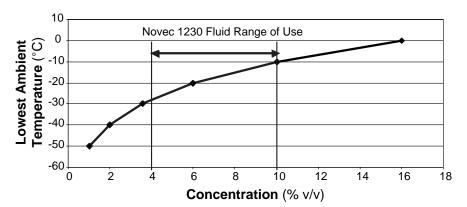
Not for specification purposes



Not for specification purposes

The following graph displays the unique properties that differentiate Novec 1230 fluid from other agents. Over a wide range of temperatures, a high boiling material like Novec 1230 fluid, when superpressurized with nitrogen in a cylinder, does not vary significantly in storage pressure like the lower boiling gasses. Note the pressure delta of only 10 bar for Novec 1230 fluid, whereas with some low boiling gases, there can be as much as a 33 bar delta over the same temperature range. The maximum fill density for Novec 1230 fluid is 1.8 times greater than lower boiling gases over the -40°C to 80°C range. This is important in applications where there is an expected wide range of temperatures, such as military vehicles, aircraft, or aboard ships that may enter tropical or arctic waters.

Pressure vs. Temperature Comparison


Super Pressurization @ 25 Bar

Source: NFPA 2001 and 3M Labs

Although most applications will not be in this temperature range, the following chart illustrates that Novec 1230 fluid is able to effectively vaporize over the expected range of design concentrations at very low ambient temperatures, even though it is a high boiling fluid.

Expected Range of Use Concentration

Compatibility of "O" Rings with Novec 1230 Fluid Exposure Time: 1 Week@ 25°C, 100°C

Elastomer Type	Exposure Temp.	Change in Shore A Hardness	% Change in Weight	% Change in Volume
Neoprene	25°C	-1.8	-0.6	-1.2
	100°C	-2.2	+2.3	+0.8
Butyl rubber	25°C	-2.7	+0.2	+0.1
	100°C	-4.0	+4.3	+4.2
Fluoroelastomer	25°C	-6.2	+0.7	+0.6
	100°C	-12.6	+9.5	+10.6
EPDM	25°C	-4.7	+0.6	+0.3
	100°C	-5.7	+3.3	+2.4
Silicone	25°C	N/A	+3.1	+2.8
	100°C	-5.4	+6.0	+5.1
Nitrile	25°C	-0.7	-0.3	-0.5
	100°C	+2.5	+4.6	+0.7

Effects of Boiling Novec 1230 Fluid on Various Metals

Metals	Effect
Aluminum Alloy 6262 T6511	Α
Brass Alloy UNS C36000	A
AISI Type 304L stainless steel	А
AISI Type 316L stainless steel	A
Copper UNS C12200	А
ASTM A 516, Grade 70 carbon steel	A

A. No discoloration or destruction of fluid or metal at temperature indicated, 10 days minimum exposure, 49°C.

3M[™] Novec[™] 1230 Fire Protection Fluid Environmental Health and Safety

A study conducted by MIT examined the atmospheric loss mechanisms for Novec 1230 fluid. The authors of this study determined that this compound does not react with hydroxyl radical (OH) but that substantial decay occurs when exposed to UV radiation. The authors measured the UV cross-section for Novec 1230 fluid, finding a maximum wavelength of absorbance at 306 nm.

Because this compound shows significant absorbance at wavelengths above 300 nm, photolysis in the lower atmosphere will be a significant sink for this compound. The authors conclude that, "In fact, the absorption spectrum is similar to that of acetaldehyde, a species whose lifetime against solar photolysis is about 5 days. The absorption cross sections of Novec 1230 fluid are somewhat larger; hence, we expect the atmospheric lifetime of Novec 1230 fluid against solar radiation to be of the order of 3-5 days."

Laboratory measurements of the photodissociation rate of Novec 1230 fluid found it to be equivalent to that for acetaldehyde, within experimental error. Hence, an atmospheric lifetime of 5 days is appropriate for Novec 1230 fluid.

The potential for Novec 1230 fluid to impact the radiative balance in the atmosphere (i.e., climate change) is limited by its very short atmospheric lifetime and low global warming potential (GWP). Using a measured IR cross-section and the method of Pinnock et. al., the instantaneous radiative forcing for Novec 1230 fluid is calculated to be 0.50 Wm⁻²ppbv⁻¹. This radiative forcing and a 5-day atmospheric lifetime results in a GWP value of 1 using the WMO 1999 method and a 100-year integration time horizon. Compounds with such short atmospheric lifetimes do not pose a risk with respect to potential climate change.

Novec 1230 fluid is expected to degrade rapidly to fluorinated alkyl radicals similar to those produced by other fluorochemicals. Studies of the atmospheric chemistry of these radical species and their degradation products have concluded that they have no impact on stratospheric ozone. This, combined with its very short atmospheric lifetime, leads to the conclusion that Novec 1230 fluid has an ozone depletion of zero.

Before using this product, please read the current product Material Safety Data Sheet (available through your 3M sales or technical service representative) and the precautions and directions for use on the product package. Follow all applicable precautions and directions.

3M™ Novec™ 1230 Fire Protection Fluid Environmental Properties Comparison

Not for specification purposes

All data other than those for Novec 1230 fluid were compiled from published sources

Properties	Novec 1230	Halon 1211	Halon 1301	HFC-125	HFC-227ea	HFC-236fa
Ozone Depletion Potential (ODP) ¹	0.0	5.1	12.0	0.0	0.0	0.0
Global Warming Potential–IPCC ²	1	1300	6900	3400	3500	9400
Atmospheric Lifetime (years)	0.014	11	65	29	33	220
SNAP (Yes/No)	Yes ³	No	No	Yes	Yes	Yes

¹ World Meteorological Organization (WMO) 1998, Model-Derived Method

Toxicity Profile

3M carefully and thoroughly characterizes the toxicity of new candidate materials early in the development process. These early studies and the subsequent studies conducted by independent laboratories demonstrate that Novec 1230 fluid is very low in both acute and chronic toxicity. The No Observed Adverse Effect Level (NOAEL) for all end-points of acute toxicity is 10% based on a cardiac sensitization study and a 4-hour acute inhalation study.

Toxicity Properties Comparison

Not for specification purposes

Properties	Novec 1230	Halon 1301	HFC-125	HFC-227ea	Inert Gas	CO ₂
NOAEL / LOAEL ¹ Cardiac sensitization (% v/v)	10.0/>10.0²	5.0/7.5	7.5/10.0	9.0/10.5	43.0/52.0	NA

¹ No Observed Adverse Effect Level and Lowest Observed Adverse Effect Level for cardiac sensitization (halocarbons) and oxygen depletion (inert gas)

Packaging and Availability

Novec 1230 fluid is currently available in 2645 lb. (1200 kg) intermediate bulk containers (IBCs), 353 lb. (160 kg) drums and 11 lb. (5 kg) glass sample jugs.

A cylinder containing Novec 1230 fluid superpressurized with nitrogen varies only 150 psi over a temperature range of 220°F (105°C). Also, because it is packaged in IBCs and drums, it can be air freighted without the restrictions on gaseous alternatives.

² Intergovernmental Panel on Climate Change (IPCC) 2001 Method, 100 Year ITH

³ U.S. EPA has approved Novec 1230 fluid for total flooding and is expected to approve for streaming Q3 2003.

² Huntingdon, UK results, 2000

3M™ Novec™ 1230 Fire Protection Fluid Resources & Distribution

3M™ Novec™ 1230 Fire Protection Fluid is supported by global sales, technical and customer service resources, with technical service laboratories in the U.S., Europe, Japan, Latin America and Southeast Asia. Users benefit from 3M's broad technology base and continuing attention to product development, performance, safety and environmental issues.

Extensive OEM policies and equipment design guidelines have been prepared for system retrofit, installers and equipment manufacturers in support of Novec 1230 fluid.

For additional technical information on Novec 1230 fluid in the United States, or for the name of a local authorized distributor, call 3M Performance Materials Division, **800 810 8513**.

For other 3M global offices, and information on additional 3M products, visit our web site at www.3m.com/novec1230fluid

United States 3M Specialty Materials 3M Center, Building 223-6S-04 St. Paul, MN 55144-1000 800 810 8513 800 810 8514 (Fax) Europe 3M Specialty Materials 3M Belgium N. V. Haven 1005, Canadastraat 11 B-2070 Zwijndrecht 32 3 250 7874 Canada 3M Canada Company Specialty Materials P.O. Box 5757 London, Ontario N6A 4T1 800 364 3577

Japan Sumitomo 3M Limited 33-1, Tamagawadai 2-chome Setagaya-ku, Tokyo 158-8583 Japan 813 3709 8250 Asia Pacific and Latin America Call (U.S.) 651 736 7123

Important Notice to Purchaser: The information in this publication is based on tests that we believe are reliable. Your results may vary due to differences in test types and conditions. You must evaluate and determine whether the product is suitable for your intended application. Since conditions of product use are outside of our control and vary widely, the following is made in lieu of all express and implied warranties (including the implied warranties of merchantability and fitness for a particular purpose): Except where prohibited by law, 3M's only obligation and your only remedy, is replacement or, at 3M's option, refund of the original purchase price of product that is shown to have been defective when you received it. In no case will 3M be liable for any direct, indirect, special, incidental, or consequential damages (including, without limitation, lost profits, goodwill, and business opportunity) based on breach of warranty, condition or contract, negligence, strict tort, or any other legal or equitable theory.

3M Specialty Materials